TEE CHEMISTRY Semester 2 Examination SOLUTIONS

PART 1

1. c	6. a	11. c	16. c	21. b	26. c
2. b	7. c	12. a	17. c	22. c	27. b
3. d	8. d	13. c	18. b	23. c	28. d
4. d	9. b	14. b	19. d	24. c	29. b
5. d	10. c	15. a	20. c	25. d	30. b

PART 2

1. (a) $3CH_3C \bigvee_{H}^{O} + Cr_2O_7^{2-} + 8H^+ \rightarrow 3CH_3C \bigvee_{OH}^{O} + 2Cr^{3+} + 4H_2O$

Colour changes from orange to green. Smell of vinegar detected.

- (b) $Cr_2O_3(s) + 6H^+(aq) \rightarrow 2Cr^{3+}(aq) + 3H_2O(\ell)$ Solid dissolves to produce a deep green solution.
- (c) $Ni(s) + Cu^{2+}(aq) \rightarrow Ni^{2+}(aq) + Cu(s)$ Metal covered with black or brown precipitate. Solution changes from blue to green over time.
- (d) $CH_3COO^-(aq) + H^+(aq) \rightarrow CH_3COOH(aq)$ No visible change but smell of vinegar detected.

Species	Electron dot diagram	Bond angles	
EXAMPLE: beryllium difluoride (BeF ₂)	F Be F	equal to 180°	
Selenium dioxide (SeO ₂)	O: Se O	slightly less than 120°	
molecular aluminium bromide (A <i>l</i> Br ₃)	Br Al Br Br	equal to 120°	
tellurate ion (TeO ₄ ²⁻)	$\begin{bmatrix} \cdot & 0 & \cdot \\ \cdot & 0 & \cdot & 0 \\ \cdot & 0 & \cdot \end{bmatrix}^{2}$	equal to 109.5°	

1 mark each

1 mark

3.

Species	Shape and Polarity of Bonds	Net Polarity
EXAMPLE Water		*
dichloromethane		*
Arsenic tribromide	Br Astill Br Br Br	\downarrow

Substances	Chemical Test	Observations	
Solid potassium nitrate	1. Dissolve in a little water	For potassium nitrate	
and Solid magnesium nitrate	2. Add any of CO_3^{2-} ,	no visible change	
	OH^- or S^{2-}	For magnesium nitrate	
		white ppt formed	
Solid sodium sulfide	Add HCℓ solution	For sodium sulfide	
and	OR	Produces smell of rotten eggs OR	
Solid sodium nitrate	Dissolve in a little water then add a solution containing a	Produces a precipitate (colour depends on metal ion used)	
	metal ion such as Cu^{2+} , Fe^{2+} , Zn^{2+} or any other ion that forms an insoluble sulphide.	For sodium nitrate No smell detected Or No Precipitate produced	

5.

for pH = 8.50 [H⁺] = $3.16 \times 10^{-9} \text{ mol } \text{L}^{-1}$ Therefore [OH⁻] = $\frac{10^{-14}}{3.16 \times 10^{-9}}$ = $3.16 \times 10^{-6} \text{ mol } \text{L}^{-1}$ n(OH⁻) = cV = $3.16 \times 10^{-6} \times \text{V}$ mol n(H⁺)_{on mixing} = n(H⁺) - n(OH⁻) = (2.51188 \times 10^{-4} - 3.16 \times 10^{-6}) = $2.48 \times 10^{-1} \times \text{V}$ mol [H⁺] = $\frac{\text{n}}{\text{V}}$ = $\frac{2.48 \times 10^{-4} \times \text{V}}{2\text{V}}$ = 1.24×10^{-4} mol L⁻¹ pH = -log[H⁺] = -log (1.24 \times 10^{-4}) = 3.91

4.

6. Test tube 1

Solution turned blue.

Test tube 2

(a) Solution turned pink.

(b) As the forward reaction is endothermic (absorbs heat) when cooled (removed heat) a new equilibrium is established so that heat is replaced. This can only happen if the reverse reaction occurs to a greater extent. So more pink $[Co(H_2O)_6]^{2+}$ is produced.

Test tube 3

- (a) Solution turns pink.
- (b) Concentration of all species is reduced. The rate of the forward reaction will decrease. The rate of the reverse reaction is unlikely to be affected as the collision rate between water and the $[CoC\ell_4]^{2-}$ will most probably not change. So more pink $[Co(H_2O)_6]^{2+}$ is produced.
- 7. (a)

-

- Water interacts via dipole dipole attractions with the polar end (sulfonic acid group) and via hydrogen bonding with the OH⁻ group.
- Oils interact with the non-polar carbon chain via dispersion forces.

(b)

8. (a) and (b)

(c)

Electrode	Equation			
Cathode	$\mathrm{Co}^{2^+} + 2\mathrm{e}^- \rightarrow \mathrm{Co}$			
Anode	$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$			

- (d) 1. Cathode: electrode would be coated with a silver-grey metal.
 - 2. Anode: bubbles of colour less gas would be produced.
 - 3. Solution: pink colour would fade to colourless.

Name: propene.

- Polypropene. (b)
- (c) Addition polymer
- Mixture is added to hot concentrated NaOH solution. Only ZnO will dissolve. 10. 1. $ZnO(s) + 2OH^{-}(aq) + H_2O \leftrightarrows [Zn(OH)_4]^{2-}(aq)$
 - 2. Filter to remove all other solid oxides
 - 3. Add a few crystals of pure $Zn(OH)_2$ or carefully add acid to precipitate Zn(OH)₂

$$H^+ + OH^- \rightarrow H_2O$$
 and $[Zn(OH)_4]^{2-} \leftrightarrows 2OH + Zn(OH)_{2(s)}$

Equilibrium shifts

to products

CT T

тт

- Filter to collect Zn(OH)₂ 4.
- Heat residue to produce ZnO. 5.

$$Zn(OH)_{2(s)} \xrightarrow{Heat} ZnO(s) + H_2O$$

$$CH_{3}CH_{2}CH=CH_{2} \qquad CH_{3}C=CH_{2} \qquad \downarrow H \qquad \downarrow C=C \qquad \downarrow H \qquad \downarrow L \qquad \downarrow C=C \qquad \downarrow H \qquad \downarrow L \qquad \downarrow C=C \qquad \downarrow H \qquad \downarrow L \qquad \downarrow L$$

...

PART 3

(a) Anode: $2C\ell^{-} \rightarrow 2C\ell_{2} + 2e^{-}$ Cathode: $2H_{2}O + 2e^{-} \rightarrow H_{2} + 2OH^{-}$

(b)
$$n(C\ell_2) = \frac{PV}{RT} = \frac{200 \times 101.3 \times 1.20}{8.315 \times 295} = 9.911 \text{ mol}$$

 $n(e^-) = 2n(C\ell_2) = 2(9.911) = 19.82 \text{ mol}$
 $n(e^-) = \frac{1t}{96490}$ therefore $t = \frac{n(e^-) \times 96490}{1}$
 $= \frac{19.82 \times 96490}{25.0} = 7.65 \times 10^4 \text{ s}$
 $(1.28 \times 103 \text{ min})$
 (21.3 h)

(c) Product formed is NaOH.

 $n(NaOH) = n(OH^{-}) = n(e^{-}) = 19.83 \text{ mol}$ $m(NaOH) = nM = 19.82 \times 39.998 = 792.76 \text{ g}$ [M(NaOH) = 39.998 g mol⁻¹] = 793 g

2.
$$\operatorname{Ba}^{2^+}(\operatorname{aq}) + \operatorname{SO}_4^{2^-}(\operatorname{aq}) \rightarrow \operatorname{BaSO}_4(\operatorname{s})$$

$$n(BaSO_4) = \frac{m}{M} = \frac{1.78}{233.36} = 7.6277 \times 10^{-3} \text{ mol} \qquad [M(BaSO_4) = 233.36 \text{ g mol}^{-1}]$$

$$n(CuSO_4.5H_2O) = n(SO_4^{2^-}) = n(Ba^{2^+}) = n(BaSO_4) = 7.6277 \times 10^{-3} \text{ mol}$$

$$n(CuSO_4.5H_2O) = nM \qquad [M(CuSO_4.5H_2O) = 249.69 \text{ g mol}^{-1}]$$

$$= 7.6277 \times 10^{-3} \times 249.69$$

$$= 1.9046 \text{ g}$$

$$m(\text{pure Azurite} = m(\text{impure Azurite}) - m(\text{CuSO}_{4.5}\text{H}_{2}\text{O}) \\ = 21.6 - 1.9046 \\ = 19.695 \text{ g} \\ \% \text{ Azurite} = \frac{m(\text{pureAzurite})}{m(\text{impureAzurite})} \times 100 = \frac{19.695}{21.6} \times 100 = 91.2\%$$

TRIAL	ROUGH	1	2	3	4
Final Reading (mL)	23.36	23.34	24.01	22.47	23.94
Initial Reading (mL)	0.31	1.04	1.78	1.21	1.56
Amount used (mL)	23.05	22.30	22.23	21.26	22.38

 $(MnO^{4-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O(\ell)) \times 4$ (b) $(CH_3CH_2OH(aq) + H_2O(\ell) \rightarrow CH_3COOH(aq) + 4H^+(aq) + 4e^-) \times 5$ $5 \text{CH}_3 \text{CH}_2 \text{OH}(\text{aq}) + 4 \text{MnO}_4^-(\text{aq}) + 12 \text{H}^+(\text{aq}) \rightarrow 4 \text{Mn}^{2+}(\text{aq}) + 5 \text{CH}_3 \text{COOH}(\text{aq}) + 11 \text{H}_2 \text{O}(\ell)$ $V(MnO^{4-})_{used} = \frac{22.30 + 22.23 + 22.38}{3} = 22.30 \text{ mL}$ (c) $n(MnO4^{-})_{used} = cV = 0.00930 \times 0.0223 = 2.074 \times 10^{-4} mol$ $n(CH_3CH_2OH)_{in \ 20 \ mL} = \frac{5}{4}n(MnO^{4-}) = \frac{5}{4}(1.074 \times 10^{-4}) = 2.59 \times 10^{-4} \text{ mol}$ n(CH₃CH₂OH) in 1000 mL of dil Solution and therefore in 5.00 mL of wine = $\frac{1000}{20} \times 2.59 \times 10^{-4}$ = 0.01296 mol $= \frac{n}{V} = \frac{0.01296}{0.005} = 2.59 \text{ mol } \text{L}^{-1}$ [CH₃CH₂OH] $m(CH_3CH_2OH)_{in \ 1000 \ mL} = nM$ = 2.59 × 46.058 $[M(CH_3CH_2OH) = 46.058 \text{ g mol}^{-1}]$ (d) = 119.399 g % CH₃CH₂OH _{by mass} = $\frac{119.399}{960}$ x 100 = 12.4% $= \frac{12.01}{44.01} \times 2.685 = 0.73272 \text{ g}$ m(C)(a) $= \frac{2.016}{18.016} \times 0.4122 = 0.046125 \text{ g}$ m(H) = 1.267 - (0.73272 + 0.046125) = 0.48815 g m(O)С Η 0 0.73272 Mass (g) 0.046125 0.48815 $\underline{0.48815} = 0.030509$ $\frac{0.73272}{12.01} = 0.061009$ $\frac{0.046125}{12.020} = 0.045759$ n 12.01 1.008 16.00

Simplest ratio $\frac{0.61009}{0.030509} = 1.999$ $\frac{0.046125}{0.030509} = 1.4998$ $\frac{0.030509}{0.030509} = 1.00$ empirical formula is C₄H₃O₂

4.

(b)
$$T = 300 \text{ °C} = 573 \text{K}$$

 $P = 101.3 \text{ kPa}$ $n = \frac{PV}{RT} = \frac{101.3 \times 0.153}{8.315 \times 573} = 3.2317 \times 10^{-3} \text{ mol}$
 $V = 152 \text{ mL} = 0.152 \text{L}$
 $R = 8.315$
 $n = ?$
 $M = 0.5369 \text{ g}$ $M = \frac{\text{m}}{\text{n}} = \frac{0.5369}{3.2317 \times 10^{-3}} = 1.6613 = 166$

(c) $M(C_4H_3O_2) = 83.064$ $\frac{M(compd)}{M(C_4H_3O_2)} = \frac{166.13}{83.064} = 2.00$ Therefore Molecular formula is 2 × empirical formula is 2 × (C_4H_3O_2) = C_8H_6O_4

5. (a)
$$CaCO_{3}(s) + 2CH_{3}COOH \rightarrow CO_{2} + Ca^{2+} + CH_{3}COO^{-} + H_{2}O$$

 $m(CH_{3}COOH) = \frac{4.00}{100} \times 500 = 20.0 g$
 $n(CH_{3}COOH) = \frac{m}{M} = \frac{20.0}{60.052} = 0.3330 \text{ mol} [M(CH_{3}COOH) = 60.052 \text{ g mol}^{-1}]$
 $n(CaCO_{3}) = \frac{m}{M} = \frac{19.63}{100.09} = 0.1961 \text{ mol} [M(CaCO_{3}) = 100.09 \text{ g mol}^{-1}]$
 $n(CH_{3}COOH)_{\text{required to remove all scale}} = 2n(CaCO_{3}) = 2(0.1961) = 0.3922 \text{ mol}$
There is only 0.3330 mole of CH₃COOH therefore CH₃COOH is LR
 $n(CO_{2}) = \frac{1}{2}n(CH_{3}COOH) = \frac{1}{2}(0.3330) = 0.1665 \text{ mol}$
 $m(CO_{2}) = nM = 0.1665 \times 44.01 = 7.3286 \text{ g}$
 $= \frac{7.33 \text{ g}}{2}$ $[M(CO_{2}) = 44.01 \text{ g mol}^{-1}]$

(b) $n(Ca^{2+}) = \frac{1}{2}n(CH_3COOH) = \frac{1}{2}(0.3330) = 0.1665 \text{ mol}$ $[Ca^{2+}] = \frac{n}{v} = \frac{0.1665}{489 \times 10^{-3}} = 0.340 \text{ mol } L^{-1}$

For answers to Part 4 please see the Extended Answer Question Answers